A collaborative research of the scientists from United States, United Kingdom and Japan has introduced a novel platform to investigate the binding interactions between human telomeric G-quadruplexes and small molecule ligands at single molecule level. This research work has been recently published in Nature Chemistry (link: http://www.nature.com/nchem/journal/v3/n10/pdf/nchem.1126.pdf) which is one of the most reputed Journals in the related field.

The single molecule assay employs a telomeric G-quadruplex structure to evaluate its interaction with small-molecule ligands in a laser tweezers instrument. Using a force based single-molecule technique, it has been shown that ligand not only promotes the folding of human telomeric G-quadruplex but also increases its mechanical stability. This platform simplifies the dissociation constant assay without the requirement for ligand or receptor titration and offers a general platform that can be applied to other biologically relevant ligand-receptor systems.
According to Deepak Koirala, a lead author of the paper from Nepal and PhD student of Department of Chemistry and Biochemistry at Kent State University, USA, this study highlights G-quadruplexes that are important dynamic structures involved in the mechanism of telomere elongation by the action of the enzyme complex telomerase. He adds "the mechanical information acquired by this system could provide novel perspectives for drug testing and design in the future".
No comments:
Post a Comment